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Abstract--This work aims at studying in-line bubble coalescence in non-Newtonian fluids. The 
visualisation and power spectrum of time series data, recorded via an optical sensing device, confirm that 
the bubble formation at the orifice is perfectly periodic under a constant gas flowrate. However, the 
separation interval between bubbles becomes irregular during rise, until, at a certain height above the 
orifice, the coalescence occurs. An original approach is elaborated by relating the rise of a chain of bubbles 
to consecutive shear deformations. A series of measurements on a rheometer proves for the first time that 
the bubble coalescence is mainly governed by the dynamical competition between the creation and 
relaxation of shear stresses. The time delay embedding method of reconstructing the phase-space diagram 
is applied to time series data recorded at different heights in the bubble column. The calculation of several 
parameters: the largest Lyapunov exponent, the correlation dimension, the power spectrum, and the phase 
portraits, reveals that the coalescence between bubbles obeys a chaotic and deterministic mechanism. © 
1997 Elsevier Science Ltd. 
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1. INTRODUCTION 

The behaviour of  bubbles, especially their coalescence, in non-Newtonian fluids is of key 
importance in such diverse fields as polymer devolatilisation, composites processing, boiling, 
bubble column, fermentation, cavitation, plastic foam processing, bubble absorption, etc. However, 
basic knowledge is still missing concerning the coalescence of bubbles in both Newtonian and 
non-Newtonian fluids. 

Compared with the understanding of  bubbles in Newtonian fluids, the study of the bubble 
behaviour in non-Newtonian fluids remains still in an elementary stage. Due to the inherent 
complex nature of bubble phenomena, a complete theoretical analysis is impossible at present. A 
somewhat simplified starting point in this field has been the study of bubbles formed from a single 
submerged orifice, which excludes mutual influence of bubbles formed in neighbouring orifices. 
Until now, little attention was paid to studies of bubble coalescence (Trambouze 1993). 
Nevertheless, the loss of  interfacial area due to coalescence can be a serious matter in industrial 
gas-fluid installations. 

The final stage of coalescence is the rupture of  the thin film of non-Newtonian fluid separating 
two bubbles, a matter that has received some attention (Acharya and Ulbrecht 1978; De Kee et al. 
1990). However, an equally important problem, about which there is no information in the 
literature, is the governing mechanism by which bubbles draw together and coalesce. This is the 
topic for consideration in the present paper. 

2. BASIC CONCEPTS: SOME DEFINITIONS 

Chaos theory is a newly developing discipline, we recommend the books by Berg6 et al. 

(1984), Schuster (1988) and Ott (1993) as good overviews. To facilitate the understanding, the 
basic definitions are given below without resorting to too much mathematics before presenting 
results. 
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In mathematical models of physical dynamical systems, the dynamic evolution is visualised in 
the phase-space whose dimension is given by the number of independent variables. In experiments, 
the phase-space is usually unknown beforehand and often only a single scalar variable of the system 
(a single time series) can be measured. Fortunately, it can be shown that one variable already 
contains most of the information about the total system and not just a minor part (Takens 1981; 
Marl6 1981). A widely used method of reconstructing a phase-space from a single time series has 
been proposed by Packard et al. (1980). The dynamics of a time series {x~, x2 . . . .  , xn} are fully 
embedded in the D-dimensional phase-space ~O(D > d, where d is the dimension of the attractor) 
defined by 

r t  = {x , ,  x , + 2  . . . . . .  x ,  [11 

where r is a suitably selected delay time. If the time series is sampled every At s, then the delay 
parameter may be expressed as r = JAt .  

2. I. Correlation dimension v 

The correlation dimension v has been used as a characteristic of strange attractors to distinguish 
between deterministic chaos and stochastic processes (Grassberger and Procaccia 1983). The 
fundamental difference results in the existence of an underlying order for deterministic chaos 
(Rodriguez-Iturbe et al. 1989). In a way, the correlation dimension measures the efficiency of the 
variables in taking up space in various dimensions. The correlation dimension v is defined as 

v = lira log C(r) [2] 
r-0 log r ' 

where r is the radius of an D-dimensional sphere and C(r) is the so-called correlation integral: 

C ( r ) = l i m  1 L ,,.~, ~ H(r - LI Y, - Y, II ), i :~ j [3] 
I j  = 1 

where H is the Heaviside step function, N the number of points in (Yt), and IJ Y i -  ~ll a suitable 
norm, e.g. the Euclidean norm which is used in this study. 

For stochastic processes, v varies linearly with increasing the phase-space dimension D without 
reaching a saturation value, whereas for deterministic chaos, the value of v levels off after a certain 
D (Berg6 et al. 1984). 

2.2. Lyapunov exponents 2, 
Chaotic systems exhibit sensitive dependence on initial conditions. This expression has been 

introduced to denote the property of a chaotic system, that small differences in the initial 
conditions, however small, are persistently magnified because of the dynamics of the system, so 
that in a finite time the system attains totally different states. The notion of sensitive dependence 
on initial conditions is made more accurate through the introduction of Lyapunov exponents. 
Usually, systems containing at least one positive Lyapunov exponent are considered to be chaotic 
(Wolf et al. 1985; Benettin et al. 1980). This means that trajectories starting from two nearby points, 
no matter how close together, will evolve quite differently and move exponentially away from one 
another with time. 

The implementation of the algorithm of Wolf et al. (1985) is straightforward. The distance 
between the initial point X(to) and the nearest neighbour is denoted L(to). At time t~, this length 
element will evolve to L'(tO. When L'( t l )  becomes too large, a new L(t l )  is defined. In addition 
to a small L(t,) ,  the angular separation between the evolved and replacement elements must also 
be small. This procedure is repeated throughout the entire phase-space. With M being the total 
number of replacement steps, the largest Lyapunov exponent 21 is estimated from the following 
expression: 

)., ---- ~ log2 
i =  1 x ~ l  ~ i -  l )  

[41 
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When  21 > 0, it means that the time series has at least one positive Lyapunov exponent and the 
series is then chaotic. When 2~ ~< 0, the time series is a regular motion process. 

2.3. Power spectrum 
Chaotic motion means that the signal x(t) displays an irregular and aperiodic behaviour in time. 

One of  the qualitative methods used to distinguish between chaotic or periodic behaviour is a power 
spectral analysis which consists of Fourier transforming the signal x(t): 

X ( f )  = Fix(t)] = (+~x(t)e-J2~J'dt. [5] 

The power spectrum of  the signal can then be calculated by 

P( f )  = IX(f)] 2. [6] 

The power spectrum of  a periodic behaviour consists of only discrete lines of  the corresponding 
frequencies, whereas chaotic behaviour is completely aperiodic, and exhibits then broadened 
spectral lines with no dominant frequencies in P( f )  that are mostly located at low frequencies 
(Schuster 1988). 

3. EXPERIMENTAL 

Figure 1 shows the main features of  the experimental set-up consisting of a Plexiglas cylindrical 
tank surrounded by a square duct. The diameter of  the tank was 0.30 m and its height was 0.40 m. 
The duct had a 0.35 m square cross section, and permitted to eliminate optical distortions for 
visualization as well as to control the liquid temperature inside the cylindrical tank. Bubble 
generation was through an orifice of  varying diameters (0.2-5 × 10 -3 m), submerged in the liquid 
at the centre at the bottom section of the tank. Air was used as injected gas. A great reservoir was 
used to avoid any fluctuations due to bubble formation and detachment. The air injection system 
was designed in order to be operated in two different ways. When a continuous flowrate was 
applied, the electronic valve of  rapid response (~< 8 ms) controlled by a personal computer was kept 
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Figure 1. Experimental set-up. 
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open so that the air entered into the fluid and formed a set of bubbles rising in line. By means 
of camera visualization and image analysis, it was observed that under a stationary flowrate, the 
bubbles formed in line had the same shape and identical volume. However, the injection period 
between bubbles was fixed with a continuous injection. It was possible to inject a set of bubbles 
of determined volume with a desired injection period through the electronic valve by varying its 
open duration as well as the pressure inside the reservoir. 

In this study, the time series data were the frequency of bubble passage at different heights in 
the tank. They were measured by optical probes of photodiodes placed at the external wall of the 
square duct. The data acquisition was carried out by the personal computer. All experiments were 
carried out at constant temperature (293 K). 

The non-Newtonian fluids used in this work were 1% (wt) polyacrylamide (PAAm) in 99% 
water, 1.5% (wt) PAAm in 49.25% (wt) w a t e r ~ 9 . 2 5 %  (wt) glycerol and 1.7% (wt) 
carboxymethylcellulose (CMC) in 44.6% (wt) water--53.7% (wt) glycerol. A Rheometrics Fluid 
Spectrometer RFS II was employed to measure the rheological properties of these solutions which 
behaved as shear-thinning fluids (figure 2). They can be perfectly fitted by the Cross model. As 
normal stresses were too small to be measured accurately in these fluids, stress relaxation 
measurements after sudden cessation of steady shear flow were performed. At the same shear rate, 
the relaxation times for the CMC, 1% PAAm and 1.5% PAAm solutions were respectively of the 
order of 2, 9 and 15 s. Therefore, the 1.5% PAAm solution may be seen as the most elastic, while 
the CMC solution is the least one. 

4. RESULTS AND DISCUSSION 

Typically, in-line interactions will accelerate the bubble rise velocity in Newtonian fluids (Omran 
and Foster 1977). The evidence of this behaviour in non-Newtonian fluids was clearly brought up 
in this work: the influence of the injection period on the rise velocity is shown in figure 3 in the 
1% PAAm solution. An injection period of  order of 3, 10 and 15 s was necessary to prevent the 
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Figure 3. Influence of the injection period on the rise velocity in 1% PAAm solution. 

interactions between bubbles, respectively for the CMC, 1% PAAm and 1.5% PAAm fluids. 
Approximately, this is nothing but the rough estimate of the stress relaxation time obtained on 
the rheometer. In the absence of interactions, the bubble rise velocity increased with the volume 
and the dependence upon the orifice diameter seemed to be negligible. The latter can be explained 
by the fact that compared with the bubble formation in water, the viscous resistance due to the 
high value of  fluid viscosity in this study (800--6000 times more viscous than water) should be 
dominant with respect to the inertial effects. When the injection period became short enough (less 
than 1 s), an interesting phenomenon was observed: from a certain rising distance from the orifice 
according to the operating parameters (in general about 10cm), a trailing bubble began to 
accelerate progressively, and approached the leading bubble who kept nevertheless its rising 
velocity. When the trailing bubble was very close to the leading one, these two bubbles underwent 
progressively shape changes, especially at the level of the tail for the leading bubble and the top 
for the trailing one to form two parallel interfaces. They collided and coalescence occurred. The 
bubble chain was then broken up. The coalesced bubble accelerated the rise velocity due to the 
increase of the volume and induced consecutive coalescence. In this case, the measurement of a 
stationary rise velocity is meaningless. 

In the literature, the interactions and coalescence of bubbles are a little better documented for 
Newtonian fluids, especially for water. In this case, the acceleration of the trailing bubble is usually 
considered as based on a decreased drag within small distance, due to turbulence in the viscous 
wake induced by the leading one (De Nevers and Wu 1971; Bhaga and Weber 1980). 

Respectively, by means of a visualization method and a laser-Doppler anemometer, Coutanceau 
and Hajjam (1982) and Bisgaard (1983) have observed a peculiar phenomenon behind the leading 
bubble in a non-Newtonian fluid: the fluid went up with the bubble only in its vicinity; from a 
close distance behind the bubble, the fluid took an opposite direction and went down to form a 
'negative wake'. The exact length of the negative wake is difficult to determine, because the negative 
velocity approaches zero very slowly. This effect is in general attributed to the elasticity of the fluid, 
but requires further theoretical and experimental investigation. 
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Effectively, the wake behind a leading bubble can be considered responsible for the decreased 
drag in water. On the other hand, the negative wake in a non-Newtonian fluid is not likely to 
explain the interactions and coalescence in non-Newtonian fluids. With respect to water, the high 
value of the viscosity of the non-Newtonian fluids used in this work will also easily absorb any 
turbulence created by the passage of a bubble. It may be noticed that compared with bubble rise 
in water, the Reynolds number is 800-6000 times smaller in our fluids. Furthermore, an another 
significant factor differentiating bubble-bubble interactions in non-Newtonian fluids from that in 
water is the long field of action. In the PAAm solutions, a following bubble can accelerate from 
a distance of 0.4 m behind the leading one which is reaching the free surface. In a higher column, 
the interaction range could be expected to cover greater distance. Consecutive coalescence will 
produce bigger bubbles and affect then seriously the transfer efficiency as this is the case in an 
industrial fermentor. 

A more plausible explanation may be the relaxation of stresses induced by the passage of bubbles. 
The relaxation time of these stresses is determined by the fluid elasticity. However, a rigorous 
modelling of the interactions between bubbles is beyond the reach until now. So, we had the idea 
to simulate the passage of bubbles by imposing consecutive shear rates to a fluid sample by means 
of the rheometer RFS II which measured the response of the sample in term of stress. We call this 
original approach 'rheological simulation' (Li et al. 1997). In the literature, the maximum shear 
rate corresponding to the rise of a bubble is defined as the ratio of the rise velocity to the equivalent 
diameter of the bubble: ~max ~- T;/deq.  For the passage of a chain of bubbles formed under a constant 
injection period T at a point in fluid for consideration, the simulated shear rate of each bubble 
was calculated by a periodic function of hyperbolic cosine kind. 

The rheological simulation showed that there was a gradual accumulation of stresses which had 
tendency to reach a stationary value. The magnitude of these unrelaxed or residual stresses could 
be considered as both strongly dependent upon the injection period and proportional to the 
elasticity of the fluid. In the light of these findings, the following scenario can be proposed: after 
the passage of a leading bubble, the memory effect of the elasticity holds the shear-thinning process 
during a certain time so that the local viscosity decreases, and the drag opposed to the trailing 
bubble is then reduced. 

The rheological simulation was realised in these three fluids, taking especially into account the 
experimental values of rise velocity and injection period. Figure 4 reports a qualitative comparison 
between the reduced rise velocity and the reduced residual stress (normed respectively by the 
stationary rise velocity and initial stress) as a function of the injection period. In spite of the scale 
difference between these two parameters, a close correlation does exist and provides evidence that 
the interactions should be essentially dominated by stress relaxation process. It is worth noting that 
to our knowledge, such an approach is not yet reported in the literature. 

Analysis of chaotic time series involves calculating dynamical invariants or dimensions. These 
parameters are the best available measure to describe and quantify the underlying attractor of a 
chaotic system. Specifically, the present study employs four techniques for chaotic behaviour 
analysis. The power spectrum, phase portrait, Lyapunov exponent, and correlation dimension 
analyses were used to determine the presence of strange attractor and chaotic behaviour in bubble 
coalescence caused by non-linear interactions between bubbles. 

The tendency of these solutions were comparable. In this paper, only the results of 1% PAAm 
solution with an air flowrate of 0.18 x 10 .6 m 3 s-: are presented. Figure 5 shows an example of 
the temporal measurements at, respectively, 1.5 and 15cm above the orifice. Each pulse 
corresponds to the passage of a bubble. When a bubble passed in front of the optical probes, a 
part of light was reflected so that the signal in form of electric voltage detected by the photodiodes 
decreased and could become negative. It is very interesting to note that at a height near the orifice, 
the bubble passage was very regular with similar pulses and constant intervals between them. Due 
to the coalescence, this regularity was progressively lost with the increase of the height. At 15 cm 
above the orifice, the number of bubbles decreased drastically and the magnitude of some pulses 
increased significantly due to the increase of bubble size. Figure 6 shows the corresponding power 
spectrum of bubble passage at, respectively, 1.5 and 15 cm above the orifice. Near the orifice, the 
principal frequency followed by a set of harmonics demonstrates that the formation of bubble was 
perfectly periodic. This was confirmed by visual observation and image analysis. However, this 
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Figure 4. Agreement between the reduced rise velocity and reduced residual stresses in function of the injection 
period in 1.5% PAAm solution (bubble volume: 1.37 x 10 -6 m3). 

regular i ty  was progress ively  lost when the d is tance  f rom the orifice increased,  and  the power  
spec t rum is typica l ly  that  o f  a chaot ic  phenomenon ,  since it exhibits  b roadened  spectral  lines with 
no d o m i n a n t  frequencies in the power  spec t rum tha t  are mos t ly  loca ted  at  low frequencies.  

As  shown above,  it is poss ible  to recons t ruc t  new coord ina tes  by means  o f  the t ime delay 
embedd ing  technique:  X = x, and  Y = x, +~ (the delay p a r a m e t e r  z = At) in o rder  to represent  the 
co r r e spond ing  phase  po r t r a i t  (figure 7). It is wor th  not ing  that  at 1.5 cm, the phase po r t r a i t  shows 
a regular  r ing symbol i s ing  a mono- f requenc ia l  phenomenon .  On the o ther  hand,  the phase por t r a i t  
at  15 cm reveals  a very rich s t ructure  o f  the a t t r ac to r  with the appea rance  o f  several r ings that  
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Figure 6. Power spectrum of the signals (figure 5) at (a) 1.5 cm and (b) 15 cm above the orifice. 

characterize consecutive coalescence of bubbles: the formation of each ring in the phase portrait  
introduces a new independent frequency. In relation to the phase portraits, a close examination 
of the frequency appearance in the power spectrum especially in function of different heights above 
the orifice tends to show that the period-doubling sequences could be the most plausible route to 
lead to chaos. However, the rigorous determination of the route requires still further investigation. 

According to the phase portraits, it is then possible to speculate that in order to describe 
consecutive coalescence and to predict the final bubble size in a very high industrial bubble column, 
the self-similar structure could lead to a scaling law through a fractal dimension from laboratory 
pilot to industrial installation. 

The computat ion of the largest Lyapunov exponent i~ is subject to the utmost  care. In fact, the 
absolute value of 2~ is very sensitive to the parameters required in the algorithm of Wolf  et al. 

(1985): embedding dimension D, minimum and maximum length scales, number of  replacement 
steps M, the number of  data points N and especially the delay time z. The values of the largest 
Lyapunov exponent 21 at different heights in the column are presented in table 1. In the middle 
column of this table, the delay time z is simply the data acquisition interval as commonly used 
in the literature. In the right column, the delay time z was optimized for each time series by using 
the method proposed by Rosenstein et al. (1994). Clearly, the results are quite different according 
to the delay time and the number of  data points used. In spite of  the difference in absolute 
magnitude, there is a certain convergent tendency. The exponent is negative or close to zero for 
the regular bubble passage near the orifice. An abrupt  increase of IL is observed when the 
coalescence took place. The exponent decreases as bubbles approached the top of the column. This 
decrease might be explained as follows: the bubble passage became more regular due to the drastic 
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Table  1. The largest Lyapunov exponent  3.~ at different heights in the column 

Largest Lyapunov Largest Lyapunov 
exponent 3.z exponent 2~ 

Distance from the (N = 8192 points (N = 16384 points 
orifice (cm) and r = At) and T optimized) 

1.5 --0.17 0.001 (z = 5At) 
4.8 --2.80 0.002 (z = 5At) 
7.0 0.58 0.2 (z = 5At) 
9.5 14.90 1.8 (z = 5At) 

12.1 16.99 1.9 (z = 5At) 
15.0 37.25 1.9 (z = 4At) 
19.8 15.10 1.8 (z = 4At) 
27.3 - 18.09 1.0 (z = 4At) 
33 - 7.6 0.9 (z = 4At) 

decrease of bubble number resulting from the consecutive coalescence in the lower column section 
(for the same measurements duration, the bubble number decreased from 2000 bubbles near the 
orifice to about 500 bubbles at the approach of the top of the column); moreover, the free surface 
could slow down the bubble rise and introduce to a certain extent some orders. 

The variation of the correlation dimension with the embedding dimension is shown in figure 8 
for the measurements at 15 cm in the column. It can be seen that the saturation value is achieved 
when D = 3. This gives estimates of the lower bounds for the dimension of embedding phase space 
sufficient to model the dynamics. In another words, the number of degrees of freedom in the chaotic 
coalescence is only 3. This means that three ordinary differential equations would be sufficient to 
describe the chaotic coalescence procedure. 

The search of the form of such equations is being carried out. We will try to make use of the 
rheological properties of the fluids, in particular the relaxation function. The knowledge of these 
equations will also help to understand the route leading to chaos in the coalescence of bubbles. 
Furthermore, compared with Kaplan-Yorke conjecture, the value of the correlation dimension 
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Figure 8. Variation of  the correlation dimension with the embedding dimension at 15 cm above the orifice. 
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obtained shows that the method proposed by Rosenstein et al. (1994) to calculate the delay time 
r is relatively suitable for computing the largest Lyapunov exponent 2t. 

5. CONCLUSIONS 

This work reports a study of in-line bubble coalescence in non-Newtonian fluids. The image 
analysis show that under a constant gas flowrate, bubbles formed at the orifice have the identical 
volume, shape and separation interval. As bubbles rise in the column, the separation interval 
between bubbles becomes irregular, until, at a height with respect to the orifice, the coalescence 
occurs. 

The original rheological simulation, taking into account the experimental injection period and 
bubble rise velocity, throws insight for the first time to the accumulation of residual stresses in 
non-Newtonian fluids after the passage of a chain of bubbles. The relaxation of these residual 
stresses, closely related to the drag decrease, is then the dominant mechanism governing the 
interactions and coalescence between bubbles. The time delay embedding method of reconstructing 
the phase-space diagram was applied to time series data of bubble passage recorded at different 
heights in the bubble column. The power spectrum shows that near the orifice, the principal 
frequency is followed by a set of harmonics: the formation of bubbles is then perfectly periodic. 
However, this periodicity is progressively lost with the increasing distance from the orifice, and the 
power spectrum exhibits broadened spectral lines with no dominant frequencies. The appearance 
of chaos can also be visualised through phase portraits: the formation of several rings reveals the 
frequency bifurcation. The largest Lyapunov exponent is negative or close to zero for the regular 
bubble passage near the orifice. An abrupt change occurs when the coalescence takes place. The 
variation of the correlation dimension with the embedding dimension reaches a saturation value 
when the embedding dimension is equal to 3. This gives estimates of the lower bounds for the 
dimension of embedding phase-space sufficient to model the dynamics. It is then possible to 
attribute the appearance of the chaos to a non-linear dynamical competition between the creation 
and relaxation of shear stresses as shown by the rheological simulation. The third control parameter 
would be the bubble formation frequency at the orifice. 

In the light of these results, the establishment of future models for bubble coalescence will be 
hoped possible in non-Newtonian fluids. 
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